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Abstract

Using tri-dimensional micromagnetic simulations, the phase diagram including different magnetic
ground states is computed for circular Co dots as a function of the dot dimensions. The presence of
a large perpendicular magnetocrystalline anisotropy induces a shift of the boundary between the

ground states and increases the number of possible stable states.
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1. Introduction

Over the past decade, magnetic materials structured on the submicron length scale have been
the subject of increasing interest because of their possible applications as high-density storage
media [1]. Therefore the magnetisation configurations as well as the corresponding reversal
processes are of a primary concern. The magnetic properties of small elements are controlled by
their shape, dimensions and material parameters. In this context, regular arrays of submicron dots of
different geometries, such as rectangles, squares, triangles, circles, rings or pentagons were
fabricated using materials like Permalloy, Co or Fe [2].

The understanding of the magnetic properties of such nanoelements requests a rigorous
analysis, using experimental studies correlated with numerical simulations. Experimental
techniques, such as the magneto-optical Kerr effect magnetometry or magnetic force microscopy
(MFM) either enable us to extract information on the average magnetisation or give limited access
to the spatial variation of the magnetisation. Additional information of the fine details of the internal
distribution of the magnetisation can be obtained only by micromagnetic modelling.

In this paper, a systematic investigation of the ground state configurations in circular Co
dots is carried out by means of 3D micromagnetic calculations. The first part describes the

numerical tools used and in the second part the numerical results are discussed.

2. Computational details

According to micromagnetic theory [3], a ferromagnetic system consisting of a large number

of individual magnetic spins is described using continuous functions for the magnetisation, the



fields and the energies. Moreover the amplitude of the magnetisation vector M(f) has to be

constant ‘I\ﬁ (F)‘ =M S‘|rT1(r*)| = M, but its orientation may change from one position to another. In

this approach, for a given magnetisation distribution M () the Gibbs free energy is:

G(M): j dV{AEX(Drﬁ)Z+g(rT1,Uk)—

Volum

where I:|,clp is the applied field, A, is the exchange constant and H,. is the demagnetising field.
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The magnetocrystalline anisotropy energy density g for a uniaxial crystal U, is given by

g(rﬁ, u, ) =K,[1- (r?l (i, )2], where K, is the anisotropy constant. Using the variational principle to

—

minimise the Gibbs free energy with respect to the magnetisation M , the equation of the stable
equilibrium state reads mMx I:|eff =0, where the effective field I:|eff is defined as I:Ieff =-0G / OM .

Because the magnetostatic interaction is of long-range, the micromagnetic equation is highly non-
linear and analytical solutions can only be found for very special cases [4]. For systems having a
complex geometry, numerical simulations are requested. To this purpose several numerical
approaches were proposed using either the finite element method [5,6] or the finite difference
method [7]. For the simulations reported here, a finite difference algorithm was developed based on

the time integration of the Landau-Lifshitz—Gilbert equation (LLG):

@ra) B = - ) S0 (1 )
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Here y is the gyromagnetic ratio of the free electron spin and a is the damping parameter. The
ferromagnetic system is spatially divided into N, XN, x N, tetragonal cells and within each cell

the magnetisation is assumed to be uniform. In order to assure a good description of the

magnetisation details for example inside a domain wall or a vortex, the size of the mesh has to be
smaller than the characteristic lengths of the material: the exchange length |, =/ A, / ( UM 2 ) and

the Bloch wall parameter A, =,/ A, /K, . The most intensive part of the computation procedure in

micromagnetic simulations is the evaluation of the demagnetising field. In our case the stray field is
evaluated from the magnetostatic interaction energy between two mesh cells [8]. For a regular mesh
the Fast Fourier Transform (FFT) implementation reduces the computation time considerably.
Starting from a given magnetisation distribution, the integration of the LLG equation using an
implicit Crank-Nicholson method provides the evolution of the magnetisation in time towards the

equilibrium state. The equilibrium is reached if the maximum value of the torque decreases below a

given tolerance, with ‘rﬁx I:|Eff ‘ <107°M.. Because we are interested only in the static configuration

and not in the intermediate states a large value for the damping parameter a =1 is used in order to
accelerate the computation.

In the present study, the described procedure was applied to a circular geometry. The choice
of the discretization scheme is validated by the fact that the numerical ‘roughness’ (generated by the
square mesh representation) corresponds to the real imperfections on the lateral dot surface, arising

for example from the resolution of the patterning methods used.



3. Ground states of circular Co dots

The magnetic stable states exhibited by a circular dot depend on the element size (diameter
and thickness), the intrinsic material parameters (spontaneous magnetisation, crystal anisotropy)
and the magnetic history (remnant or demagnetised state, field orientation). MFM measurements
performed on circular Co(0001) dots [9] clearly showed two magnetic contrasts: a strong black—
white dipolar contrast arising from an in-plane single domain configuration and a weak contrast
associated with a flux closure configuration (vortex-like state). Furthermore an irreversible
transition could be induced from the single domain state to the vortex state by the MFM tip stray
field, indicating that the vortex state is the energetically lower state for the investigated dimensions.

In order to explore the evolution of these two states as a function of the dot diameter (¢ ) and
the thickness (t), micromagnetic simulations were carried using the material parameters of Co, with
M, =1.4x10°A/m, A, =14x10""J/m, K, =5.0x10°J/m®. Starting either from an in-plane
or an out-of-plane saturated state the system relaxes to an in-plane single domain (SD) or to a
vortex-like state (V) (Fig. 1a). The state having the lowest energy value represents the ground state
of the system.

In the vortex state the magnetisation curls in a circular path along the dot border leading to a
singularity (vortex) in the dot centre where the magnetisation turns out of plane (OZ direction). In
order to properly represent such a magnetic singularity involving a rapid variation of the
magnetisation, the mesh size needs to be chosen sufficiently small. As shown in figure 1b for the

M, component of the vortex state, the vortex is not obtained, if the mesh size is larger than 2le. For
the results reported here a mesh size of 0.75 lex (I, =3.37 nm, A, =5.28 nm) was used providing

an accurate description of the vortex structure.
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Fig. 1. (a) The magnetisation vector plot for the single domain (SD) and vortex-like (V)
state. (b) The out-of-plane magnetisation profile along a radial section of the V state in a dot of @ =

200 nm/ t = 2 .5 nm as a function of the discretization mesh.

First, Co dots with zero magnetocrystalline anisotropy (K, =0 J/m) are discussed. The

different ground state configurations in zero applied field of such polycrystalline Co dots are
summarised in figure 2. The critical diameter at which the in-plane single domain state renders the
vortex state energetically more favourable decreases with increasing thickness. For these two
possible ground states the total energy arises from the demagnetisation and the exchange
contribution. For the in-plane single domain state the magnetisation lies in the dot plane being
almost uniform. The energy of this state is dominated by the magnetostatic contribution because of
the magnetic charges induced on the lateral surface of the dot. In contrast, for the vortex like state

the magnetic flux being closed, the magnetostatic energy is drastically reduced. But the central



region including the vortex core represents a large concentration of exchange energy which
becomes comparable to the magnetostatic energy of a SD state if the dot diameter approaches the
vortex core diameter. Since the magnetostatic energy of the in-plane SD increases with increasing

dot thickness, the critical diameter of the boundary decreases with increasing t.
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Fig. 2. The ground state phase diagram for polycrystalline (K, =0 J/m?®) circular Co dots.

In addition to the in-plane single domain state and the vortex state, a third
configuration is found corresponding to an out-of-plane single domain state when the thickness is
comparable to or larger than the dot diameter. For this range of aspect ratios (t=¢), the dot
corresponds to an elongated wire and the shape anisotropy prefers an alignment of the
magnetisation along the long wire axis.

A similar phase diagram has been reported by [10] and [2] for polycrystalline permalloy
circular dots. In this case the boundary between the in-plane SD and the V state is shifted to much
larger values of t and ¢. This is explained by the fact that the saturation magnetisation of permalloy

is smaller than the one of Co.



Including now a uniaxial magnetocrystalline anisotropy perpendicular to the dot plane a
similar ground state phase diagram was computed for Co dots as shown in figure 3. It is noted that

the anisotropy considered here is weaker than the demagnetisation energy yielding a Q factor
(Q = 2K, / ,uOMf) around 0.4 for Co. While the presence of such an anisotropy lowers the critical

thickness of the boundary between the in-plane to the out-of-plane SD state (at constant diameter),
it plays only a minor role for the in-plane SD to V transition. This difference is due to the relative
volumes of perpendicular magnetisation in the out-of-plane SD state and the vortex state. For the
latter this volume is small compared to the diameter and in consequence the boundary between the
in-plane SD and V ground states is only slightly shifted towards smaller values of # and ¢.

A strong influence of the perpendicular magnetocrystalline anisotropy (PMA) is exhibited
for a dot thickness above 15-20 nm where a transition from the vortex state into a weak circular
stripe domain state takes place. As shown in Fig. 4, the size of the central region where the
magnetisation is pointing upwards has increased drastically to an almost domain like region.
Already at t = 15 nm and 20 nm small oscillations of M, across the radius set in, but the
magnetisation is still predominantly in-plane. These oscillations have developed at t = 25 nm into a
circular weak stripe structure, with a period which is about half the period of the oscillations at t =
20 nm. A similar concentric ring structure has been reported in [11] for 25 nm thick square Co dots.
This thickness of t = 25 nm corresponds to the thickness range, where in continuous epitaxial
Co(0001) films a reduction of the PMA energy is achieved by the formation of a weak stripe
domain structure with the magnetisation canted out of the plane. The lateral confinement of this
weak stripe structure induces a circular arrangement of the domains in order to reduce the in-plane
demagnetisation field. A qualitative boundary between the continuous transition from the vortex

state to the weak stripe state is indicated in figure 3 by the dotted line.
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Fig. 3. The ground state phase diagram computed for epitaxial Co(0001) dots with

K, =5.0x10° J/m?.
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Fig. 4. The out-of-plane magnetisation line scan profiles across diameter as a function of dot

thickness for @ =200 nm and considering a large perpendicular magnetocrystalline anisotropy.



4. Summary

Using 3D micromagnetic simulations, the phase diagram of circular Co dots with and without
perpendicular magnetocrystalline anisotropy has been calculated. While the anisotropy plays a
minor role for the in-plane single domain to vortex transition, it shifts the boundary for the in-plane
to out-of-plane single domain state and leads to a weak stripe structure for thickness above 15 nm.
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